## The Clean Air Construction Initiative

Technical Background and Implementation

Coralie Cooper, Northeast States for Coordinated
Air Use Management

### Presentation Outline



- Background
  - -- inventory
  - -- pilot
- CA/T (Big Dig)Project
  - -- implementation
  - technical and operational issues
- Expansion of the Initiative

## Inventory Background





**NOx Emissions** 

**PM Emissions** 

### Major Source Category Contribution to Northeast Regional Risk Drivers



## 1996 NESCAUM State Mobile Source Breakdown of Formaldehyde Emission Contributions



## Pilot Retrofit Project (1997-98)

- Funded by project participants
- Collected in-use emissions data
- Retrofitted machines with several types of control equipment
- Assessed emissions reductions achieved through the use of control equipment
- Compared laboratory with field data

#### Test Site: Salem Harbor Power Plant



#### Test Vehicles

- Volvo WL, 1994
- Caterpillar 988 WL, 1973
- International Bulldozer, 1985
- Caterpillar Backhoe, 1994 (Perkins)
- International Dump Truck, 1988



## **Emission Control Equipment**

| Vehicle     | Oxidation<br>Catalyst | Passive<br>Filter | Active<br>Filter | Additive |
|-------------|-----------------------|-------------------|------------------|----------|
| Bulldozer   | X                     |                   |                  |          |
| Volvo       | X                     |                   |                  | X        |
| Dump Truck  | X                     |                   |                  |          |
| Caterpillar |                       | X                 |                  |          |
| Backhoe     |                       |                   | X                |          |

### Test Cycle Development

- Test Cycle Requirements
  - Representative of actual daily use
  - Repeatable during testing phase
- Development
  - Interview operators
  - Videotape of equipment at work
  - Data acquisition of exhaust temperature, rpm, and rack position

# Nonroad Engine Certification Cycle



### Volvo WL Test Cycle



### **Emission Reductions**





volvo WL (4/98)

volvo WL (2/98)

dump truck (catalyst)

cat WL (catalyzed filter)

# Central Artery/Tunnel Project (Big Dig)



- \$11 billion project
- 100 machines already retrofitted with oxidation catalysts
- Emissions testing component
- 8 tons of PM and HC will be reduced annually

### **Project Initiation**

- Big Dig located in downtown Boston
- The need to reduce diesel exhaust in offices, hospitals, and apartments adjacent to the construction spurred the retrofit effort
- MA DEP, MA Highway, NESCAUM, MA EOEA initiated the retrofit program
- The Boston City Council was highly supportive of the initiative
- Publicity for the project encouraged contractors and others to participate

### Implementation

- Initially, MA Highway announced the retrofit of 70 machines already in use
- A retrofit requirement for new construction contracts was put in place
- Half of the project funds will come from MA Highway and half from Big Dig contractors
- Contractors will pay for new contract requirements

### Implementation (cont.)

- 100 machines retrofitted to date
- 2 new contracts include the retrofit requirement in the odor control section
- Effort dovetails with EPA VMEP retrofit initiative for selection of emission control devices

### VMEP Retrofit Program

- Verification system for retrofit devices
- SIP credit protocol for HDE retrofit
- Testing requirement for program application
- In-use testing requirement
- Testing requirements used as criteria for Big Dig project participation

#### Technical Issues

- Some machines need to be tested for exhaust temperatures
- Data on engine displacement needed for proper sizing of catalysts
- Space constraints can pose problems as some OEM mufflers are small

### Operational Issues

- The need to limit down-time is a constraint
- Data collection, installation, and emissions testing performed during off hours if required
- Zero maintenance control devices preferred
- Warranty of engine and muffler need to be respected
- Equipment operators have been pleased with the retrofitted machines

# Next Steps for Big Dig Retrofit Project

- Emissions testing will be conducted on retrofitted machines
- Credit generation for emission reductions possible
- Potential to introduce SCR and emulsion pilot demonstrations on Big Dig machines

## Initiative Expansion

- The MA Executive Office of Environmental Affairs (EOEA) is recommending retrofitting as a means to mitigate the air quality impacts of large construction projects
- MA DEP is encouraging agencies to retrofit owned or contracted equipment, three agencies have agreed to participate

### Initiative Expansion (cont.)

• U.S. Senate Committee on Environment and Public Works staff are interested in following up on the emissions benefits achieved from the Big Dig project

#### Conclusions

- Retrofit of construction equipment can significantly reduce PM, HC, CO, and toxic emissions
- Potential exists to achieve NOx reductions
- Contractual requirements, incentives, and adoption of retrofit policies for publicly owned HD engines are effective means to increasing the use of retrofit devices
- In-use testing is an important component to ensure emissions reductions are achieved